Molecular Diagnostic Methods in Genetic Neuromuscular and Neurodegenerative Diseases
Main Article Content
Abstract
The etiological study of neurogenetic diseases requires molecular diagnosis, for which various genetic analysis techniques that the physician must know, and in turn, this technique must be analyzed by the laboratory considering the clinical guidance. The lack of knowledge of the correlations between the phenotypes and the appropriate tests can lead to diagnostic errors since the wrong technique would not identify the underlying genetic cause, confusing or postponing the diagnosis. A review of molecular biology techniques applied to neurogenetic diagnosis, examples of clinical correlations with specific techniques, and tables with allele types related to diagnostic confirmation are presented. This review is helpful for clinical interpretation and for analysis and reporting of results by laboratories that perform molecular diagnostic tests.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Commons
License Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
You are free to:
Share - copy and redistribute the material in any medium or format.
Adapt - remix, transform, and build upon the material The licensor cannot revoke these freedoms as long as you follow the license terms.
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Jain KK. Molecular Diagnostics for Neurological Disorders. Applications of Biotechnology in Neurology. Totowa, NJ: Humana Press; 2013. p. 155-210. DOI: https://doi.org/10.1007/978-1-62703-272-8_5
Guo MH, Bardakjian TM, Brzozowski MR, Scherer SS, Quinn C, Elman L, et al. Temporal trends and yield of clinical diagnostic genetic testing in adult neurology. Am J Med Genet A. 2021;185(10):2922-8. DOI: https://doi.org/10.1002/ajmg.a.62372
Fay AJ, Knox R, Neil EE, Strober J. Targeted Treatments for Inherited Neuromuscular Diseases of Childhood. Semin Neurol. 2020;40(3):335-41. DOI: https://doi.org/10.1055/s-0040-1702940
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett. 2018;667:27-39. DOI: https://doi.org/10.1016/j.neulet.2017.01.014
Pilarski R. How Have Multigene Panels Changed the Clinical Practice of Genetic Counseling and Testing. J Natl Compr Canc Netw. 2021;19(1):103-8. DOI: https://doi.org/10.6004/jnccn.2020.7674
Jiao Q, Sun H, Zhang H, Wang R, Li S, Sun D, et al. The combination of whole-exome sequencing and copy number variation sequencing enables the diagnosis of rare neurological disorders. Clin Genet. 2019;96(2):140-50. DOI: https://doi.org/10.1111/cge.13548
Dewey FE, Pan S, Wheeler MT, Quake SR, Ashley EA. DNA sequencing: clinical applications of new DNA sequencing technologies. Circulation. 2012;125(7):931-44. DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.972828
Adams DR, Eng CM. Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. N Engl J Med. 2018;379(14):1353-62. DOI: https://doi.org/10.1056/NEJMra1711801
Pettersson E, Lundeberg J, Ahmadian A. Generations of sequencing technologies. Genomics. 2009;93(2):105-11. DOI: https://doi.org/10.1016/j.ygeno.2008.10.003
Lippa N, Bier L, Revah-Politi A, May H, Kushary S, Vena N, et al. Diagnostic sequencing to support genetically stratified medicine in a tertiary care setting. Genet Med. 2022;24(4):862-9. DOI: https://doi.org/10.1016/j.gim.2021.12.010
Seaby EG, Pengelly RJ, Ennis S. Exome sequencing explained: a practical guide to its clinical application. Brief Funct Genomics. 2016;15(5):374-84. DOI: https://doi.org/10.1093/bfgp/elv054
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44-53. DOI: https://doi.org/10.1126/science.abj6987
Benarroch L, Bonne G, Rivier F, Hamroun D. The 2023 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2023;33(1):76-117. DOI: https://doi.org/10.1016/j.nmd.2022.12.002
Bean LJH, Funke B, Carlston CM, Gannon JL, Kantarci S, Krock BL, et al. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(3):453-61. DOI: https://doi.org/10.1038/s41436-019-0666-z
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. DOI: https://doi.org/10.1038/gim.2015.30
Federici G, Soddu S. Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers. J Exp Clin Cancer Res. 2020;39(1):46. DOI: https://doi.org/10.1186/s13046-020-01554-6
Winder TL, Tan CA, Klemm S, White H, Westbrook JM, Wang JZ, et al. Clinical utility of multigene analysis in over 25,000 patients with neuromuscular disorders. Neurol Genet. 2020;6(2):e412. DOI: https://doi.org/10.1212/NXG.0000000000000412
Speciale AA, Ellerington R, Goedert T, Rinaldi C. Modelling Neuromuscular Diseases in the Age of Precision Medicine. J Pers Med. 2020;10(4). DOI: https://doi.org/10.3390/jpm10040178
Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, et al. The Human Gene Mutation Database (HGMD((R))): optimizing its use in a clinical diagnostic or research setting. Hum Genet. 2020;139(10):1197-207. DOI: https://doi.org/10.1007/s00439-020-02199-3
Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D7. DOI: https://doi.org/10.1093/nar/gkx1153
Fokkema I, Kroon M, Lopez Hernandez JA, Asscheman D, Lugtenburg I, Hoogenboom J, et al. The LOVD3 platform: efficient genome-wide sharing of genetic variants. Eur J Hum Genet. 2021;29(12):1796-803. DOI: https://doi.org/10.1038/s41431-021-00959-x
Ji J, Leung ML, Baker S, Deignan JL, Santani A. Clinical Exome Reanalysis: Current Practice and Beyond. Mol Diagn Ther. 2021;25(5):529-36. DOI: https://doi.org/10.1007/s40291-021-00541-7
Fung JLF, Yu MHC, Huang S, Chung CCY, Chan MCY, Pajusalu S, et al. A three-year follow-up study evaluating clinical utility of exome sequencing and diagnostic potential of reanalysis. NPJ Genom Med. 2020;5(1):37. DOI: https://doi.org/10.1038/s41525-020-00144-x
Nishio SY, Usami SI. The Clinical Next-Generation Sequencing Database: A Tool for the Unified Management of Clinical Information and Genetic Variants to Accelerate Variant Pathogenicity Classification. Hum Mutat. 2017;38(3):252-9. DOI: https://doi.org/10.1002/humu.23160
Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet. 2015;47(7):717-26. DOI: https://doi.org/10.1038/ng.3304
Liu Z, Zhu L, Roberts R, Tong W. Toward Clinical Implementation of Next-Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends Genet. 2019;35(11):852-67. DOI: https://doi.org/10.1016/j.tig.2019.08.006
Hiz Kurul S, Oktay Y, Topf A, Szabo NZ, Gungor S, Yaramis A, et al. High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases. Brain. 2022;145(4):1507-18. DOI: https://doi.org/10.1093/brain/awab395
Carneiro TN, Krepischi AC, Costa SS, Tojal da Silva I, Vianna-Morgante AM, Valieris R, et al. Utility of trio-based exome sequencing in the elucidation of the genetic basis of isolated syndromic intellectual disability: illustrative cases. Appl Clin Genet. 2018;11:93-8. DOI: https://doi.org/10.2147/TACG.S165799
van der Lee R, Correard S, Wasserman WW. Deregulated Regulators: Disease-Causing cis Variants in Transcription Factor Genes. Trends Genet. 2020;36(7):523-39. DOI: https://doi.org/10.1016/j.tig.2020.04.006
Karki R, Pandya D, Elston RC, Ferlini C. Defining "mutation" and "polymorphism" in the era of personal genomics. BMC Med Genomics. 2015;8:37. DOI: https://doi.org/10.1186/s12920-015-0115-z
Singh AK, Olsen MF, Lavik LAS, Vold T, Drablos F, Sjursen W. Detecting copy number variation in next generation sequencing data from diagnostic gene panels. BMC Med Genomics. 2021;14(1):214. DOI: https://doi.org/10.1186/s12920-021-01059-x
Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances in computational approaches. Front Genet. 2015;6:138. DOI: https://doi.org/10.3389/fgene.2015.00138
Hubers A, Marroquin N, Schmoll B, Vielhaber S, Just M, Mayer B, et al. Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiol Aging. 2014;35(5):1214 e1-6. DOI: https://doi.org/10.1016/j.neurobiolaging.2013.11.034
Perenthaler E, Yousefi S, Niggl E, Barakat TS. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front Cell Neurosci. 2019;13:352. DOI: https://doi.org/10.3389/fncel.2019.00352
Edelson PK, Dugoff L, Bromley B. Chapter 11 - Genetic Evaluation of Fetal Sonographic Abnormalities. In: Norton ME, Kuller JA, Dugoff L, editors. Perinatal Genetics. Philadelphia: Elsevier; 2019. p. 105-24. DOI: https://doi.org/10.1016/B978-0-323-53094-1.00011-4
Turro E, Astle WJ, Megy K, Graf S, Greene D, Shamardina O, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583(7814):96-102. DOI: https://doi.org/10.1038/s41586-020-2434-2
Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473-8. DOI: https://doi.org/10.1073/pnas.1418631112
Marshall CR, Chowdhury S, Taft RJ, Lebo MS, Buchan JG, Harrison SM, et al. Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. NPJ Genom Med. 2020;5:47. DOI: https://doi.org/10.1038/s41525-020-00154-9
Stenton SL, Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784. DOI: https://doi.org/10.1016/j.ebiom.2020.102784
Klopstock T, Priglinger C, Yilmaz A, Kornblum C, Distelmaier F, Prokisch H. Mitochondrial Disorders. Dtsch Arztebl Int. 2021;118(44):741-8. DOI: https://doi.org/10.3238/arztebl.m2021.0251
Macken WL, Lucassen AM, Hanna MG, Pitceathly RDS. Mitochondrial DNA variants in genomic data: diagnostic uplifts and predictive implications. Nat Rev Genet. 2021;22(9):547-8. DOI: https://doi.org/10.1038/s41576-021-00381-5
Nissanka N, Moraes CT. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 2020;21(3):e49612. DOI: https://doi.org/10.15252/embr.201949612
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet. 2022;13:985975. DOI: https://doi.org/10.3389/fgene.2022.985975
Course MM, Gudsnuk K, Smukowski SN, Winston K, Desai N, Ross JP, et al. Evolution of a Human-Specific Tandem Repeat Associated with ALS. Am J Hum Genet. 2020;107(3):445-60. DOI: https://doi.org/10.1016/j.ajhg.2020.07.004
Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics. 2007;5(1):7-14. DOI: https://doi.org/10.1016/S1672-0229(07)60009-6
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun. 2021;9(1):98. DOI: https://doi.org/10.1186/s40478-021-01201-x
Bastepe M, Xin W. Huntington Disease: Molecular Diagnostics Approach. Curr Protoc Hum Genet. 2015;87:9 26 1-9 3. DOI: https://doi.org/10.1002/0471142905.hg0926s87
Melo AR, Ramos A, Kazachkova N, Raposo M, Bettencourt BF, Rendeiro AR, et al. Triplet Repeat Primed PCR (TP-PCR) in Molecular Diagnostic Testing for Spinocerebellar Ataxia Type 3 (SCA3). Mol Diagn Ther. 2016;20(6):617-22. DOI: https://doi.org/10.1007/s40291-016-0235-y
Singh S, Zhang A, Dlouhy S, Bai S. Detection of large expansions in myotonic dystrophy type 1 using triplet primed PCR. Front Genet. 2014;5:94. DOI: https://doi.org/10.3389/fgene.2014.00094
Lian M, Zhao M, Phang GP, Soong YT, Yoon CS, Lee CG, et al. Rapid Molecular Screen of Spinocerebellar Ataxia Types 1, 2, and 3 by Triplet-Primed PCR and Melting Curve Analysis. J Mol Diagn. 2021;23(5):565-76. DOI: https://doi.org/10.1016/j.jmoldx.2021.01.012
Ciosi M, Maxwell A, Cumming SA, Hensman Moss DJ, Alshammari AM, Flower MD, et al. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. EBioMedicine. 2019;48:568-80. DOI: https://doi.org/10.1016/j.ebiom.2019.09.020
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, et al. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr. 2017;43(1):101. DOI: https://doi.org/10.1186/s13052-017-0419-z
LaPelusa A, Kentris M. Muscular Dystrophy. StatPearls. Treasure Island (FL)2022.
Mercuri E, Finkel RS, Muntoni F, Wirth B, Montes J, Main M, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103-15. DOI: https://doi.org/10.1016/j.nmd.2017.11.004
Ogino S, Wilson RB, Gold B. New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Eur J Hum Genet. 2004;12(12):1015-23. DOI: https://doi.org/10.1038/sj.ejhg.5201288
Crunkhorn S. Improving efficacy of ASO therapy in SMA. Nat Rev Drug Discov. 2022;21(8):558. DOI: https://doi.org/10.1038/d41573-022-00115-0
Garcia-Acero M, T. P, Guerra-Torres M, García-Robles R, Ayala-Ramírez P, Buitrago T, et al. Análisis del espectro mutacional de la distrofia muscular de Duchenne en un grupo de pacientes colombianos. Neurología Argentina. 2018;10(3):137-46. DOI: https://doi.org/10.1016/j.neuarg.2018.05.001
Guevara-Fujita ML, Huaman-Dianderas F, Obispo D, Sanchez R, Barrenechea V, Rojas-Malaga D, et al. MLPA followed by target-NGS to detect mutations in the dystrophin gene of Peruvian patients suspected of DMD/DMB. Mol Genet Genomic Med. 2021;9(9):e1759. DOI: https://doi.org/10.1002/mgg3.1759
Neri M, Rossi R, Trabanelli C, Mauro A, Selvatici R, Falzarano MS, et al. The Genetic Landscape of Dystrophin Mutations in Italy: A Nationwide Study. Frontiers in Genetics. 2020;11. DOI: https://doi.org/10.3389/fgene.2020.00131
Takeda S, Clemens PR, Hoffman EP. Exon-Skipping in Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2021;8(s2):S343-S58. DOI: https://doi.org/10.3233/JND-210682
Buitrago T, Garcia-Acero M, Guerra-Torres M, Pineda T, Gamez T, Suarez-Obando F, et al. Variants in the Sequence of the Probe Hybridization Site May Affect MLPA Performance in Patients with Duchenne/Becker Muscular Dystrophy. J Appl Lab Med. 2023;8(3):469- DOI: https://doi.org/10.1093/jalm/jfac136
Ashizawa T, Gagnon C, Groh WJ, Gutmann L, Johnson NE, Meola G, et al. Consensus-based care recommendations for adults with myotonic dystrophy type 1. Neurol Clin Pract. 2018;8(6):507-20. DOI: https://doi.org/10.1212/CPJ.0000000000000531
Ho G, Cardamone M, Farrar M. Congenital and childhood myotonic dystrophy: Current aspects of disease and future directions. World J Clin Pediatr. 2015;4(4):66-80. DOI: https://doi.org/10.5409/wjcp.v4.i4.66
Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet. 2012;20(12):1203-8. DOI: https://doi.org/10.1038/ejhg.2012.108
Addis M, Serrenti M, Meloni C, Cau M, Melis MA. Triplet-primed PCR is more sensitive than southern blotting-long PCR for the diagnosis of myotonic dystrophy type1. Genet Test Mol Biomarkers. 2012;16(12):1428-31. DOI: https://doi.org/10.1089/gtmb.2012.0218
Bonifazi E, Vallo L, Giardina E, Botta A, Novelli G. A long PCR-based molecular protocol for detecting normal and expanded ZNF9 alleles in myotonic dystrophy type 2. Diagn Mol Pathol. 2004;13(3):164-6.
Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol. 2012;11(10):891-905. DOI: https://doi.org/10.1016/S1474-4422(12)70204-1
Audag N, Goubau C, Toussaint M, Reychler G. Screening and evaluation tools of dysphagia in adults with neuromuscular diseases: a systematic review. Ther Adv Chronic Dis. 2019;10:2040622318821622. DOI: https://doi.org/10.1177/2040622318821622
Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet. 1998;18(2):164-7. DOI: https://doi.org/10.1038/ng0298-164
Goyal NA, Mozaffar T, Chui LA. Oculopharyngeal Muscular Dystrophy, an Often Misdiagnosed Neuromuscular Disorder: A Southern California Experience. J Clin Neuromuscul Dis. 2019;21(2):61-8. DOI: https://doi.org/10.1097/CND.0000000000000271
Tawil R, Van Der Maarel SM. Facioscapulohumeral muscular dystrophy. Muscle Nerve. 2006;34(1):1-15. DOI: https://doi.org/10.1002/mus.20522
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol. 2021;12:642858. DOI: https://doi.org/10.3389/fphar.2021.642858
Lemmers R, van der Vliet PJ, Vreijling JP, Henderson D, van der Stoep N, Voermans N, et al. Cis D4Z4 repeat duplications associated with facioscapulohumeral muscular dystrophy type 2. Hum Mol Genet. 2018;27(20):3488-97. DOI: https://doi.org/10.1093/hmg/ddy236
Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329(5999):1650-3. DOI: https://doi.org/10.1126/science.1189044
Ricci G, Zatz M, Tupler R. Facioscapulohumeral Muscular Dystrophy: More Complex than it Appears. Curr Mol Med. 2014;14(8):1052-68. DOI: https://doi.org/10.2174/1566524014666141010155054
Nguyen K, Puppo F, Roche S, Gaillard MC, Chaix C, Lagarde A, et al. Molecular combing reveals complex 4q35 rearrangements in Facioscapulohumeral dystrophy. Hum Mutat. 2017;38(10):1432-41. DOI: https://doi.org/10.1002/humu.23304
Lemmers RJ, Wohlgemuth M, van der Gaag KJ, van der Vliet PJ, van Teijlingen CM, de Knijff P, et al. Specific sequence variations within the 4q35 region are associated with facioscapulohumeral muscular dystrophy. Am J Hum Genet. 2007;81(5):884-94. DOI: https://doi.org/10.1086/521986
Lemmers RJ, de Kievit P, Sandkuijl L, Padberg GW, van Ommen GJ, Frants RR, et al. Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat Genet. 2002;32(2):235-6. DOI: https://doi.org/10.1038/ng999
Lemmers RJ, Tawil R, Petek LM, Balog J, Block GJ, Santen GW, et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet. 2012;44(12):1370-4. DOI: https://doi.org/10.1038/ng.2454
Pisciotta C, Saveri P, Pareyson D. Updated review of therapeutic strategies for Charcot-Marie-Tooth disease and related neuropathies. Expert Rev Neurother. 2021;21(6):701-13. DOI: https://doi.org/10.1080/14737175.2021.1935242
Pareyson D, Scaioli V, Laura M. Clinical and electrophysiological aspects of Charcot-Marie-Tooth disease. Neuromolecular Med. 2006;8(1-2):3-22. DOI: https://doi.org/10.1385/NMM:8:1-2:3
Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, et al. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res. 2021;227:100-11. DOI: https://doi.org/10.1016/j.trsl.2020.07.006
Jung NY, Kwon HM, Nam DE, Tamanna N, Lee AJ, Kim SB, et al. Peripheral Myelin Protein 22 Gene Mutations in Charcot-Marie-Tooth Disease Type 1E Patients. Genes (Basel). 2022;13(7). DOI: https://doi.org/10.3390/genes13071219
Plante-Bordeneuve V, Guiochon-Mantel A, Lacroix C, Lapresle J, Said G. The Roussy-Levy family: from the original description to the gene. Ann Neurol. 1999;46(5):770-3. DOI: https://doi.org/10.1002/1531-8249(199911)46:5<770::AID-ANA13>3.0.CO;2-U
Valentijn LJ, Ouvrier RA, van den Bosch NH, Bolhuis PA, Baas F, Nicholson GA. Dejerine-Sottas neuropathy is associated with a de novo PMP22 mutation. Hum Mutat. 1995;5(1):76-80. DOI: https://doi.org/10.1002/humu.1380050110